Positive solutions for asymptotically linear problems in exterior domains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POSITIVE SOLUTIONS OF INEQUALITY WITH p-LAPLACIAN IN EXTERIOR DOMAINS

In the paper the differential inequality ∆pu +B(x, u) 6 0, where ∆pu = div(‖∇u‖ ∇u), p > 1, B(x, u) ∈ C( n × , ) is studied. Sufficient conditions on the function B(x, u) are established, which guarantee nonexistence of an eventually positive solution. The generalized Riccati transformation is the main tool.

متن کامل

Existence and Multiplicity of Positive Radial Solutions to Nonlocal Boundary-value Problems in Exterior Domains

In this article, we consider nonlocal p-Laplacian boundary-value problems with integral boundary conditions and a non-negative real-valued boundary condition as a parameter. The main purpose is to study the existence, nonexistence and multiplicity of positive solutions as the boundary parameter varies. Moreover, we prove a sub-super solution theorem, using fixed point index theorems.

متن کامل

Positive Super-solutions to Semi-linear Second-order Non-divergence Type Elliptic Equations in Exterior Domains

We study the problem of the existence and non-existence of positive super-solutions to a semi-linear second-order non-divergence type elliptic equation ∑N i,j=1 aij(x) ∂2u ∂xi∂xj + up = 0, −∞ < p < ∞, with measurable coefficients in exterior domains of RN . We prove that in a “generic” situation there is one critical value of p that separates the existence region from nonexistence. We reveal th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata (1923 -)

سال: 2016

ISSN: 0373-3114,1618-1891

DOI: 10.1007/s10231-016-0621-4